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Abstract The main results reported in this paper are two theorems concerning the use of
a newtype of risk-averting error criterion for data fitting. The first states that the convexity
region of the risk-averting error criterion expands monotonically as its risk-sensitivity index
increases. The risk-averting error criterion is easily seen to converge to the mean squared
error criterion as its risk-sensitivity index goes to zero. Therefore, the risk-averting error
criterion can be used to convexify the mean squared error criterion to avoid local minima.
The second main theorem shows that as the risk-sensitivity index increases to infinity, the
risk-averting error criterion approaches the minimax error criterion, which is widely used for
robustifying system controllers and filters.

Keywords Convexification · Global optimization · Local minima · Data fitting ·
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Degree of robustness
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1 Introduction

A method of training neural networks into robust approximators of functions and robust
identifiers of dynamical systems was reported in two papers [7,8] presented at the 2001
International Joint Conference on Neural Networks. The method was called the adaptive
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risk-averting training method. It uses a new type of risk-averting error criterion (4), which is
a modified version of a criterion with the same name employed for deriving robust control-
lers and filters [5,11,12]. The use of the risk-averting error criterion (the modified version)
was motivated by its emphasizing large individual deviations in approximating functions
and identifying dynamical systems in an exponential manner, thereby avoiding such large
individual deviations and achieving robust performances.

Close examination of the numerical results in [7,8] reveals that the neural networks result-
ing from training with the risk-averting error criterion do actually have smaller mean squared
errors than the neural networks trained with the mean squared error criterion. This obser-
vation confirms the well-known local-minimum difficulty that there are local minima in the
mean squares error criterion for training neural networks that are difficult, if not impossible,
to escape. In addition, the observation shows that the risk-averting error criterion enables us
to escape these local-minima with ease.

This capability of the risk-averting error criterion (4) motivated an investigation and led
to the discovery of the first main result reported here: the process of increasing the value
of the risk-sensitivity index λ gradually in the adaptive risk-averting training method [7,8]
expands the convexity region of the risk-averting error criterion, creating tunnels (or worm
holes) to allow escape from poor local minima.

More specifically, the first theorem states that when λ in the criterion (4) increases to
infinity, the region in the weight or parameter space of the neural network or regression
model on which the risk-averting error criterion is convex expands monotonically to the
entire space except the intersection of a finite number of lower dimensional sets, the number
of sets increasing rapidly as the number K of exemplary input/output pairs in the training
data increases. Roughly speaking, λ and K control the size of the convexity region of (4):
the greater λ or K , the larger the convexity region of the risk-averting error criterion.

As mentioned, the purpose of employing the risk-averting error criterion in [7,8] is to
induce robust performance in the function approximators and system identifiers. A natural
question is how the robustness induced by the risk-averting error criterion is related to the
robustness induced by the minimax error criterion used in the robust control theory [1,3]. An
answer to this question is reported as the second main theorem: as λ → ∞, the risk-averting
error criterion approaches the minimax error criterion.

The idea of convexifying a nonconvex function for global optimization is not new. Two
well-known methods are the graduated nonconvexity method [2] and the Liu–Floudas con-
vexification method [6,13]. In theory, the Liu–Floudas convexification method can be applied
to data fitting where the error criterion is twice continuously differentiable. However, if the
number of weights or parameters in the error criterion is very large, as is usually the case
with training neural networks, determining the weight α of the added quadratic function for
convexifying the error criterion involves much computation.

2 The risk-averting error criterion

If a set of exemplary input/output pairs, {(xk, yk), k = 1, . . . , K } is to be fitted to by a
feedforward neural network or a nonlinear functional regression model, y = f (x, w), with
a weight or parameter vector w, a standard mean squared error criterion is

K∑

k=1

‖yk − f (xk, w)‖2
Q (1)
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where Q is a positive definite matrix and the symbol ‖ · ‖2
Q denotes the quadratic form

(·)T Q(·).
For system identification, filter/controller synthesis, or parametric or nonparametric

dynamical regression model estimation, a set of exemplary time sequences of input/output
pairs, {(xt (s), yt (s)), t = −B, …, T , s = 1, . . . , S} is to be fitted to by a recurrent neural
network or a dynamical regression model with a weight or parameter vector w. Denoting
the output of the recurrent neural network or dynamical regression model at time t , after its
initial is set properly for time −B and it has processed xτ (s), τ = −B, …, t , one at a time
in the given order, a standard mean squared error criterion is

S∑

s=1

T∑

t=1

‖yt (s) − f (xt (s), w)‖2
Q (2)

where ‖ · ‖2
Q is defined as before.

For notational simplicity, (1) and (2) are written as

J0(w) =
K∑

k=1

eT
k (w)Qek(w) (3)

where ek(w) := yk − ŷk(w) and ŷk(w) denotes either f (xk, w) or f (xt (s), w) depending
on whether (1) or (2) is concerned. The dimensionalities of ek(w), Q and w are denoted by
m, m × m and N , respectively.

The risk-averting error criterion Jλ(w) corresponding to the standard mean squared error
criterion (3) is

Jλ(w) =
K∑

k=1

exp
[
λeT

k (w)Qek(w)
]

(4)

which is a modified version of the risk-averting error criterion used in robust control [5,11].
Here, λ is a positive number called the risk-sensitivity index.

3 The Hessian matrix

Assume that the the neural network or nonlinear regression model ŷk(w) is twice continuously
differentiable with respect to the vector w. Then,

∂ Jλ(w)

∂w j
= −2λ

K∑

k=1

αk(w)eT
k (w)Q

∂ ŷk(w)

∂w j

where

αk(w) := exp
[
λeT

k (w)Qek(w)
]

Denoting a matrix whose (i × j)th entry is ai j by [ai j ], the N × N Hessian matrix Hλ(w) :=
[∂2 Jλ(w)/∂wi∂w j ] of Jλ(w) is

Hλ(w) = 2λ

K∑

k=1

αk(w){2λAk(w) + Bk(w) − Ck(w)} (5)
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where

Ak(w) =
[
eT

k (w)Q(∂ ŷk(w)/∂wi )(∂ ŷT
k (w)/∂w j )Qek(w)

]

Bk(w) =
[
(∂ ŷk(w)/∂wi )Q(∂ ŷT

k (w)/∂w j )
]

Ck(w) =
[
eT

k (w)Q(∂2 ŷk(w)/∂wi∂w j )
]

are all N × N matrices.

4 Convexity region

In this section, we will examine the convexity region of the criterion Jλ(w), namely the
region on which Jλ(w) is convex. We note first that

Bk(w) = Fk(w)Q FT
k (w)

FT
k (w) := [∂ ŷk(w)/∂w1 · · · ∂ ŷk(w)/∂wN ]

and

Ak(w) = Dk(w)DT
k (w)

DT
k (w) := [(∂ ŷT

k (w)/∂w1)Qek(w), . . . , (∂ ŷT
k (w)/∂wN )Qek(w)]

Note that Bk(w) and Ak(w) are positive semi-definite for all w, but Ck(w) may be indefinite.
Straightforward matrix calculation yields

K∑

k=1

αk Bk(w) = FK (w)BK (w)FT
K (w)

FK (w) := [F1(w) · · · FK (w)] (6)

AK (w) := diag[α1(w)Q · · · αK (w)Q]
and

K∑

k=1

αk Ak(w) = DK (w)AK (w)DT
K (w)

DK (w) := [D1(w) · · · DK (w)] (7)

AK (w) := diag[α1(w) · · · αK (w)]
Using these newly established notations, the Hessian matrix can be written as

Hλ(w) = 2λ

{
2λDK (w)AK (w)DT

K (w) + FK (w)BK (w)FT
K (w) −

K∑

k=1

αk(w)Ck(w)

}
(8)

Since AK (w) and BK (w) are positive definite matrices, both DK (w)AK (w)DT
K (w) and

FK (w)BK (w)FT
K (w) are positive-semidefinite. Note that while the first and third terms

within the curly brackets in (8) are quadratic and linear functions of the deviations ek(w),
the second term FK (w)BK (w)FT

K (w) is independent of ek(w). If the deviations ek(w)

approach zero toward the end of applying the risk-averting error criterion Jλ(w) for data
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fitting, the second term becomes dominant in the Hessian matrix Hλ(w) in (8). The positive-
semidefiniteness of the second term (positive-definiteness if FK (w) is of full rank) makes it
less necessary to increase λ much toward the end of using Jλ(w) for data fitting.

If the (N × K )-matrix DK (w) is of full rank (i.e., rank DK (w) = N ), then DK (w)AK (w)

DT
K (w) is positive definite, and the Hessian matrix Hλ(w) is strictly monotone increasing in

the risk-sensitivity index λ. In other words, Hλ2(w) > Hλ1(w) for λ2 > λ1. It follows that
the sequence of sets Pλ := {w ∈ RN : Hλ(w) > 0} is strictly monotone increasing in the
sense that Pλ1 ⊂ Pλ2 for λ2 > λ1.

Notice that within the pair of curly brackets on the right of (8), the second and third terms
are independent of λ, the second being positive semi-definite. If λ is sufficiently large, the first
term dominates the third with respect to the matrix inequality. Hence, if the matrix DK (w) is
of full rank, there is a positive number �(w) such that Hλ(w) > 0 for λ ≥ �(w). Therefore,
{w ∈ RN : rank DK (w) = N } ⊂ ∪λ>0 Pλ and {w ∈ RN : rank DK (w) < N } ⊃ (∪λ>0 Pλ)

c,
the superscript c denoting the set complement.

The condition rank DK (w) < N means that the determinant of every N × N submatrix
of DK (w) is zero. The number of such submatrices in DK (w) is the number C(K , N ) of
combinations of K columns of DK (w) taken N at a time. Since the determinant of such a
submatrix being equal to zero is an equation in w, there are C(K , N ) equations. The intersec-
tion of these C(K , N ) solution sets is the set {w ∈ RN : rank DK (w) < N }, which contains
(∪λ>0 Pλ)

c.
Summarizing the above discussion, we have the following theorem:

Theorem 1 Assume that the risk-averting error criterion Jλ(w) in (4) is twice continuously
differentiable. The sequence of sets Pλ := {w ∈ RN : Hλ(w) > 0} is monotone increasing
as λ increases. The set M := {w ∈ RN : rank DK (w) < N }, which is the intersection of the
solution sets of C(K , N ) algebraic equations defined by setting the C(K , N ) submatrices
of DK (w) equal to zero, contains the complement of the set ∪λ>0 Pλ. In other words, as λ

increases to ∞, the set Pλ expands monotonically to the entire weight or parameter space
except the set (∪λ>0 Pλ)

c, which is contained in the intersection M.

Remark As the number K of input/output pairs in the training data increases, the number
C (K , N ) of solution sets increases rapidly, and the intersection M of these solution sets
shrinks monotonically.

5 A range of robustness

In the risk-averting error criterion Jλ(w), the greater the risk-sensitivity index λ is, the more
emphasis is place on large individual deviations ek(w). As λ ranges from 0 to ∞ (exclud-
ing 0 and ∞, of course), Jλ(w) induces a range of robustness. To obtain some intuitive
understanding of this range, we will show, in the following, that

1. Jλ(w) acts like the mean squared error criterion (3) as λ → 0; and
2. Jλ(w) acts like the minimax error criterion, infw maxk ‖ek(w), as λ → ∞.

The meaning of the word, “acts,” is specifically defined in the following.
With λ as a parameter, {Jλ(w)|λ > 0} is a parametrized collection of criteria. Observing

that
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1

K
Jλ(w) = 1

K

K∑

k=1

[
1 + λeT

k (w)Qek(w) + O(λ2)
]

= 1 + 1

K

K∑

k=1

λeT
k (w)Qek(w) + O(λ2)

Recalling the power expansion formula,

ln(1 + x) = x − 1

2
x2 + 1

3
x3 − · · · , for −1 < x < 1

we have, for λ sufficiently small,

1

λ
ln

[
1

K
Jλ(w)

]
= 1

K

K∑

k=1

eT
k (w)Qek(w) + O(λ)

It follows that

lim
λ→0

1

λ
ln

[
1

K
Jλ(w)

]
= 1

K

K∑

k=1

eT
k (w)Qek(w) (9)

This completes the proof of item 1 above. Note that 1
λ

ln
[ 1

K (·)] is a strictly monotone increas-
ing function, and hence 1

λ
ln

[ 1
K Jλ(w)

]
and Jλ(w) share the same local and global minimizers.

Let us now consider an error criterion Jλ,p(w) more general than Jλ(w) in proving a
slightly more general version of item 2 above. Denote the L p norm by ‖ · ‖p , i.e., ‖a‖p =(∑m

i=1 |ai |p
)1/p , and let Jλ,p(w) := ∑K

k=1 exp
[
λ‖yk − ŷk(w)‖p

p
]
.

Theorem 2 Let {uλ ∈ RN , λ > 0} be a sequence of weight vectors such that

lim
λ→∞ max

k
‖ek(uλ)‖p = inf

w
max

k
‖ek(w)‖p (10)

If a sequence {wλ ∈ RN , λ > 0} satisfies Jλ,p(wλ) ≤ Jλ,p(uλ) for all λ ≥ � for some
� > 0, then

lim
λ→∞ max

k
‖ek(wλ)‖p = inf

w
max

k
‖ek(w)‖p (11)

where maxk means the maximum over k ∈ {1, . . . K } and infw means the infimum over
w ∈ RN .

Proof Note first that the existence of {uλ ∈ RN , λ > 0} is implied by the definition of
infw maxk ‖ek(w)‖p . Define the notations, �(w) := arg maxk ‖ek(w)‖p

p , b := infw maxk

‖ek(w)‖p and bλ := infw Jλ,p(w). Note that �(w) may be a set.

Rewirte the two sides of Jλ,p(wλ) ≤ Jλ,p(uλ) as exp
[
λ

∥∥eφ(wλ)(wλ)
∥∥p

p

]
+∑

k 
=φ(wλ) exp
[
λ ‖ek(wλ)‖p

p
] ≤ exp

[
λ

∥∥eφ(uλ)(uλ)
∥∥p

p

]
+ ∑

k 
=φ(uλ) exp
[
λ ‖ek(uλ)‖p

p
]
, where φ(uλ) ∈

�(uλ), φ(wλ) ∈ �(wλ), the summations
∑

are taken over k = 1, . . . , K with the excep-
tion indicated below the summation signs. Because the first term on the right side is a

dominant term, it follows from this inequality that exp
[
λ

∥∥eφ(wλ)(wλ)
∥∥p

p

]
< (K + 1) exp

[
λ

∥∥eφ(uλ)(uλ)
∥∥p

p

]
. By (10), the sequence dλ := maxk ‖ek(uλ)‖p

p − bp converges to 0 as λ

approaches ∞. Rewrite this inequality as

exp
[
λ

∥∥eφ(wλ)(wλ)
∥∥p

p

]
< (K + 1) exp

[
λ(bp + dλ)

]
(12)
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Note that this inequality holds for all λ ≥ �.
Assume that (11) fails to hold for this sequence {wλ, λ > 0}. Then limλ→∞ maxk ‖ek(wλ)

‖p > b or limλ→∞ maxk ‖ek(wλ)‖p does not exist. In either case, there is c > 0 such that for
every L > 0, there exists λ > L such that ‖eφ(wλ)(wλ)‖p

p ≥ bp + c. Since limλ→∞ dλ = 0,
there is L1 > 0 such that dλ < c/2 for all λ ≥ L1. It follows from the above inequality (12)
that for all λ ≥ max{�, L1},

exp
[
λ‖eφ(wλ)(wλ)‖p

p
]

< (K + 1) exp
[
λ(bp + c/2)

]
(13)

Then for L2 = max{�, L1, 2 ln(K +2)/c}, there exists a λ > L2 such that ‖eφ(wλ)(wλ)‖p
p ≥

bp + c, which implies that for this λ, exp
[
λ‖eφ(wλ)(wλ)‖p

p
] ≥ exp[λbp + λc] > exp[λbp +

λc/2+ ln(K +2)] > (K +2) exp[λ(bp +c/2)], which contradicts (12). Therefore, the above
assumption is false, and {wλ, λ > 0} satisfies (11), completing the proof of the theorem. ��

The following corollary is an immediate consequence of Theorem 2.

Corollary 3 If wλ ∈ arg minw Jλ,p(w) for all λ > � for some � > 0, then

lim
λ→∞ max

k
‖ek(wλ)‖p = inf

w
max

k
‖ek(w)‖p

Note that Theorem 2 and its proof with the pth power ‖ · ‖p
p of the L p norm ‖ · ‖p

replaced with any monotone increasing function or any norm are still valid. An example
is obtained by replacing ‖ · ‖p

p with ‖ · ‖2
Q as used in (4). Another example is obtained by

replacing ‖ · ‖p
p with the supremum norm ‖ · ‖∞, which is defined for a m-vector y by

‖y‖∞ := maxi {yi : i = 1, . . . m}.
The two items above have now been proved. They show that Jλ(w) induces a range of

robustness from the minimum mean squared error to the minimax error as the risk-sensitivity
index λ ranges from 0 to ∞. The value of λ can be used as an index or degree of robustness.
Some numerical experiments on applying Jλ(w) to approximating functions and dynamical
systems in noisy data with various values of λ and the resulting robustification effects are
reported in [9,10].

We remark that the robustness addressed in this paper is the robustness usually found in
the engineering literature [1,3,5,11,12]. It is the opposite of the robustness usually found
in the robust statistics literature [4], where robustness means de-emphasizing large devi-
ations or outliers. In fact, Jλ(w) with a negative risk-sensitivity index λ is well suited to
inducing robustness for de-emphasizing large deviations. Obviously, the more negative the
risk-sensitivity index λ is, the more de-emphasized large deviations ek(w) are. Jλ(w) with
negative risk-sensitivity index λ is called a risk-seeking error criterion. It is proven that as
the risk-sensitivity index λ decreases to negative infinity, Jλ(w) acts like the maximin error
criterion. The risk-seeking error criteria Jλ(w) with λ ranging from 0 to −∞ induce another
range of robustness for studying robust statistics in the sense of [4]. Work on risk-seeking
error criteria in the context of robust statistics [4] will be reported elsewhere.

6 Centering and bounding for computation

The reader is referred to [7,8] for a method of training neural networks using Jλ(w). Numer-
ical examples in those papers show the effectiveness of the convexification method even if
the training or fitting data are noisy.
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Theorem 2 states that the greater λ is, the larger Pλ is. However, in applying the con-
vexification method, the magnitude of λ has to be restricted to avoid overflow or under-
flow of the registers in the computer. In the following, we determine the maximum λ value
that can be properly handled by a given computer. Recall that a typical term in Jλ(w) is
αk(w) := exp

[
λeT

k (w)Qek(w)
]
. When λeT

k (w)Qek(w) is too large or too small, αk(w)

may go beyond the maximum and minimum positive numbers, denoted by exp ζ2 and exp ζ1,
respectively, that the computer can properly do arithmetic with. For instance, ζ1 and ζ2 for a
Pentium PC are −13 and 13, respectively. The interval [exp ζ1, exp ζ2] may also be the range
that we choose to have the arithmetic done within. To best use the range [exp ζ1, exp ζ2], we
treat αk(w) as exp(λb) · exp

[
λ(eT

k (w)Qek(w) − b)
]

numerically, and determine b and the
largest value of λ allowed for the computer as follows.

Obviously, to keep exp
[
λ

(
eT

k (w)Qek(w) − b
)]

within the range [exp ζ1, exp ζ2], we need
λ

(
eT

k (w)Qek(w) − b
) ≤ ζ2 and λ(eT

k (w)Qek(w)−b) ≥ ζ1, or equivalently, qmax −ζ2/λ ≤
b ≤ qmin −ζ1/λ, where qmax := maxk

{
eT

k (w)Qek(w)
}

and qmin := mink
{
eT

k (w)Qek(w)
}
.

From qmax − ζ2/λ ≤ qmin − ζ1/λ, it follows that λ < (ζ2 − ζ1)/(qmax − qmin), which is the
maximum value of λ allowed for the computer. Notice that the range of b for a selected λ is
[qmax − ζ2/λ, qmin − ζ1/λ]. A reasonable choice for b is the middle point (qmax − ζ2/λ +
qmin − ζ1/λ)/2 of this range, which places λ(qmin − b) and λ(qmax − b) equi-distant from
(ζ2 + ζ1)/2 and makes a good use of the range [exp ζ1, exp ζ2].

In the process of training a neural network or estimating a regression model with a Pen-
tium PC or any computer with ζ2 + ζ1 = 0, we may want to set b = (qmax + qmin)/2 and
λ = 0.9 × 26/(qmax − qmin) and fix them for a certain number of iterations in an iterative
algorithm, and repeat. As qmax − qmin decreases in the training process, λ increases.

7 Conclusion

It is proven that the greater the risk-sensitivity index λ, the greater the region on which the
risk-averting error criterion is convex. This explains the ability of the adaptive risk-averting
training method in [7,8], which increases λ gradually, to avoid poor local minima. Intuitively,
increasing λ creates tunnels (or worm holes) for a local-search minimization procedure (e.g.,
quasi-Newton and conjugate gradient methods) to travel through to a good local minimum.

Nevertheless, it is still not clear under what condition or for what value of λ , a global
minimum can be reached. However, is a global minimum always desirable? Perhaps not. A
global minimum at the bottom of a narrow notch with a small opening on the “landscape”
of the error criterion may not be as desirable as a local minimum at the bottom of a slightly
shallower but much wider trough. The latter may represent a neural network with a better
generalization capability of a regression model less sensitive to sampling bias or errors.

Intuitively, increasing λ creates tunnels leading to a wider trough before leading to a nar-
rower notch. Some of the most narrow notches may not be opened up by increasing λ before a
satisfactory wide trough is obtained. This may be a blessing. However, more study is needed
to understand the effects and noneffects of increasing λ and to understand the relationship
between the width of the notch and the generalization capability of the neural network or the
regression model at the bottom of the notch.

The minimax error criterion comes from the game theory and is known to be too pessimis-
tic as a robustifying error criterion. Moreover, it is difficulty to use. The risk-averting error
criterion with a very large risk-sensitivity index acts like the minimax error criterion, and is
easier to use. More important perhaps, the risk-averting error criterion induces a continuous
range of robustness indexed by λ ranging from 0 to ∞. As λ goes to zero at one end, the risk-
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averting error criterion approaches the mean squared error criterion. As λ goes to infinity
at the other end, the risk-averting error criterion approaches the minimax error criterion.
The risk-averting error criterion provides different degrees of robustness for a robust system
designer to choose from. Developing a probabilistic decision theory to determine the optimal
value of λ for a give application is an open research topic.
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